Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biosens Bioelectron ; 234: 115356, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2310195

ABSTRACT

The COVID-19 pandemic ignited massive research into the rapid detection of bioaerosols. In particular, nanotechnology-based detection strategies are proposed as alternatives because of issues in bioaerosol enrichment and lead time for molecular diagnostics; however, the practical implementation of such techniques is still unclear due to obstacles regarding the large research and development effort and investment for the validation. The use of adenosine triphosphate (ATP) bioluminescence (expressed as relative luminescence unit (RLU) per unit volume of air) of airborne particulate matter (PM) to determine the bacterial population as a representative of the total bioaerosols (viruses, bacteria, and fungi) has been raised frequently because of the high reponse speed, resolution, and compatibility with culture-based bioaerosol monitoring. On the other hand, additional engineering attempts are required to confer significance because of the size-classified (bioluminescence for different PM sizes) and specific (bioluminescence per unit PM mass) biological risks of air for providing proper interventions in the case of airborne transmission. In this study, disc-type impactors to cut-off aerosols larger than 1 µm, 2.5 µm, and 10 µm were designed and constructed to collect PM1, PM2.5, and PM10 on sampling swabs. This engineering enabled reliable size-classified bioluminescence signals using a commercial ATP luminometer after just 5 min of air intake. The simultaneous operations of a six-stage Andersen impactor and optical PM spectrometers were conducted to determine the correlations between the resulting RLU and colony forming unit (CFU; from the Andersen impactor) or PM mass concentration (deriving specific bioluminescence).


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Adenosine Triphosphate/analysis , Pandemics , Air Microbiology , Biosensing Techniques/methods , COVID-19/diagnosis , Respiratory Aerosols and Droplets , Bacteria , Fungi , Environmental Monitoring/methods , Particle Size
2.
Journal of Materials Chemistry A ; 2023.
Article in English | Scopus | ID: covidwho-2186164

ABSTRACT

The emergence of the COVID-19 pandemic and airborne particulate matter pollution have caused a surge in the consumption of face masks in recent years. Typically, face masks are made from nondegradable petroleum-derived nonwoven materials adding to global plastic pollution and aggravating environmental concerns. Therefore, it is important to fabricate sustainable biodegradable replacements. This review intends to highlight and discuss state-of-the-art research activities that centre on the development of biodegradable nonwoven materials for face mask applications. We also identify potential candidates and strategies for future research and product development efforts. Finally, we present our perspectives on a wide avenue in need of further exploration concerning materials, methods, advanced functionalities, cost, scalability, and shelf life of sustainable advanced face masks. © 2023 The Royal Society of Chemistry.

3.
2022 ASABE Annual International Meeting ; 2022.
Article in English | Scopus | ID: covidwho-2040428

ABSTRACT

Since COVID-19 became a global pandemic, improving air quality has been increasingly important to mitigate the transmission of pathogenic aerosols. Air filters such as MERV filters have been widely used in heating, ventilation, and air conditioning (HVAC) systems to clean inlet air. In recent years, ultraviolet (UV) light has been used for decontamination and disinfection in various applications, including indoor air cleaning, e.g., upper-room ultraviolet germicidal irradiation (UVGI). There are a variety of air purification devices available in the market, with some incorporating UV technology. However, many of them are not formally tested and certified for their effectiveness in mitigating airborne pathogens and particulate matter. The research's objectives are to (1) evaluate, design, and upgrade an existing air filtration device (~2,200 CFM) with the addition of UV-C lamps;(2) test the effectiveness of the upgraded device in mitigating airborne pathogens (bacteria) and particulate matter (PM) in real scenario (poultry farm). The testing results of air quality are expressed in particular matter (PM) levels and colony-forming units (CFUs). The preliminary data showed that both MERV-8 & MERV 13 and UV-C lamps can inactivate up to 100% of airborne bacteria, and the device can remove over 95% of total PM after treatment in a ~150-layer room. © 2022 ASABE. All Rights Reserved.

4.
Biosensors (Basel) ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1809704

ABSTRACT

Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.


Subject(s)
Lab-On-A-Chip Devices , Particulate Matter , Environmental Monitoring , Particle Size , Particulate Matter/analysis
5.
Environ Pollut ; 291: 118191, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1427873

ABSTRACT

Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data. In this study, daily PM10 filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties - including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter. In urban traffic sites, the PM10 concentrations did not significantly change after the end of the lockdown, when vehicular traffic promptly returned to its usual levels; conversely, the average volume and mass magnetic susceptibilities approximately doubled, and the linear correlation between volume magnetic susceptibility and PM10 concentration became significant, pointing out the link between PM10 concentrations and the increasing levels of traffic-related magnetic emissions. Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM10 near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events. Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM10, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction. As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main particulate pollutant in traffic contexts.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Italy , Magnetic Phenomena , Pandemics , Particulate Matter/analysis , Rome , SARS-CoV-2 , Vehicle Emissions/analysis
6.
Sci Total Environ ; 805: 150327, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1428471

ABSTRACT

SARS-CoV-2 is responsible for the COVID-19 pandemic. Airflows sustain the infection spread, and in densely urbanized areas airborne particulate matters (PMs) are deemed to aggravate the viral transmission. Apis mellifera colonies are used as bioindicators as they allow environmental sampling of different nature, PMs included. This experiment demonstrates for the first time the possible use of honey bee colonies in the SARS-CoV-2 monitoring. The trial was conducted in Bologna on 18 March 2021, when the third wave of the Italian pandemic was at its peak and environmental conditions allowed high PM concentrations in the air. Sterile swabs were lined up at the hive entrance to sample the dusty material on the body of returning foragers. All of them resulted positive for the target genes of viral SARS-CoV-2 RNA. Likewise, internal samples were taken, but they resulted in no amplification of the target sequences. This experiment does not support speculations about the role of honey bees or their products in SARS-CoV-2 transmission. However, it indicates a novel use of A. mellifera colonies in the environmental detection of airborne human pathogens, at least in a densely urbanized area, deserving better understanding and possible integration with data from automatic air samplers.


Subject(s)
COVID-19 , Environmental Biomarkers , Animals , Bees , Humans , Pandemics , RNA, Viral , SARS-CoV-2
7.
Osong Public Health Res Perspect ; 12(2): 54-63, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1227262

ABSTRACT

OBJECTIVE: The objective of this study was to identify the potential and definite sources of transmission of coronavirus disease 2019 (COVID-19). METHODS: Due to time constraints and the acute nature of the pandemic, we searched only PubMed/Medline from inception until January 28, 2021. We analyzed the level of evidence and risk of bias in each category and made suggestions accordingly. RESULTS: The virus was traced from its potential origin via possible ways of transmission to the last host. Symptomatic human-to-human transmission remains the driver of the epidemic, but asymptomatic transmission can potentially contribute in a substantial manner. Feces and fomites have both been found to contain viable virus; even though transmission through these routes has not been documented, their contribution cannot be ruled out. Finally, transmission from pregnant women to their children has been found to be low (up to 3%). CONCLUSION: Even though robust outcomes cannot be easily assessed, medical personnel must maintain awareness of the main routes of transmission (via droplets and aerosols from even asymptomatic patients). This is the first attempt to systematically review the existing knowledge to produce a paper with a potentially significant clinical impact.

8.
Am J Infect Control ; 49(9): 1206-1209, 2021 09.
Article in English | MEDLINE | ID: covidwho-1220644

ABSTRACT

Shortages of efficient filtering facepiece respirators leave the public vulnerable to transmission of infectious diseases in small particle aerosols. This study demonstrates that a high-filtration-efficiency facepiece capable of filtering out >95% of 0.05µm particles while being worn can be simply produced with available materials.


Subject(s)
Occupational Exposure , Respiratory Protective Devices , Aerosols , Filtration , Humans , Ventilators, Mechanical
9.
Int Forum Allergy Rhinol ; 10(10): 1136-1140, 2020 10.
Article in English | MEDLINE | ID: covidwho-603709

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has significantly impacted endonasal surgery, and recent experimentation has demonstrated that sinonasal drilling and cautery have significant propensity for airborne particulate generation immediately adjacent to the surgical field. In the present investigation, we assessed nasopharyngeal suctioning as a mitigation strategy to decrease particulate spread during simulated endonasal surgical activity. METHODS: Airborne particulate generation in the 1-µm to 10-µm range was quantified with an optical particle sizer in real-time during cadaveric-simulated anterior and posterior endonasal drilling and cautery conditions. To test suction mitigation, experiments were performed both with and without a rigid suction placed in the contralateral nostril, terminating in the nasopharynx. RESULTS: Both anterior (medial maxillary wall and nasal septum) and posterior (sphenoid rostrum) drilling produced significant particulate generation in the 1-µm to 10-µm range throughout the duration of drilling (p < 0.001) without the use of suction, whereas nasopharyngeal suction use eliminated the detection of generated airborne particulate. A similar effect was seen with nasal cautery, with significant particle generation (p < 0.001) that was reduced to undetectable levels with the use of nasopharyngeal suction. CONCLUSION: The use of nasopharyngeal suctioning via the contralateral nostril minimizes airborne particulate spread during simulated sinonasal drilling and cautery. In the era of COVID-19, this technique offers an immediately available measure that may increase surgical safety.


Subject(s)
COVID-19/surgery , Cautery , Endoscopy , Nasopharynx/surgery , Paranasal Sinuses/surgery , SARS-CoV-2/physiology , Suction/methods , Cadaver , Humans , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL